
Mean Shift Mask Transformer for Unseen Object Instance
Segmentation Supplementary Material

Yangxiao Lu, Yuqiao Chen, Nicholas Ruozzi, Yu Xiang

I. SECOND STAGE DETAILS

The goal of the second stage is to separate nearby objects
or stacked objects. In these cases, when the first-stage model
considers multiple objects with similar pixel embeddings
as the same object, it could under-segment the objects. To
mitigate this issue, we append a second-stage segmentation
process as zoom-in refinement as shown in Fig. 1.

In detail, to get an RGB-D Region of Interest (ROI) for
each first-stage segment, we pad the segment and resize it
to 224 × 224. Next, each ROI is handled by the second-
stage network trained with synthetic ROIs (224×224 pixels)
from the Tabletop Object Dataset [1]. The architecture of the
second-stage network is exactly the same as the first-stage
network. The only difference is that the second-stage network
is trained with ROIs with size 224×224 pixels. Training the
second-stage network is necessary since reusing the first-
stage network could not result in a significant performance
increase. The second-stage network outputs some confident
mask predictions to provide new segments.

For each ROI, we only keep candidate segments overlap-
ping (thresholded at 0.5) with the original segment from
the first stage. By doing this, refined segments may have
sharper boundaries or separate merged objects. Finally, the
segmentation label map for the whole image is obtained
by collecting all the segments from the ROIs and assigning
unique IDs to every object segment.

II. MORE IMPLEMENTATION DETAILS

RGB-D Feature Map. In RGB-D case, the outputs of the
ResNets, two feature maps of resolution 1/8 of the original
image size, are first added together and further bilinearly
upsampled to generate one feature map of full resolution
(480×640 pixels) with embedding dimension C = 64. Then,
all feature vectors are ℓ2 normalized to be unit vectors,
i.e., projected on a (C − 1)-dimensional hypersphere. Now
we obtain unit RGB-D feature embeddings via Late Fusion
Addition in [2]. When training the backbone with RGB-D
images, the model is prone to overfit on the Tabletop Object
Dataset. To mitigate this issue, we freeze the parameters of
this pretrained backbone [2]. The sizes and backbones of
MSMFormer models are listed in Table I.

MS Decoder. In the first stage, we use 6 MS decoder
layers and 100 object queries, which can be viewed as
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TABLE I
THE SIZES AND BACKBONES OF MSMFORMER.

Stage Input Backbone #Parameters
1 RGB ResNet50 39.2M
2 RGB ResNet50 39.2M
1 RGB-D ResNet34 52.5M
2 RGB-D ResNet34 55.7M

cluster centers in mean shift clustering. Each decoder layer
updates the cluster centers according to the above RGB-D
pixel features. In the second stage, we use 8 MS decoder
layers. In the hypersphere attention, we set κ as 30 since it
emphasizes the points near cluster centers. We only have
two classes for unseen object instance segmentation, i.e.,
background and object. The embedding dimension of object
queries is set as 256. Queries can interact with the feature
map via decoder layers. The vector dimension of the feature
map is increased from 64 to 256 through a convolution
layer to be consistent with 256-dim object queries. Once
cluster centers are obtained, clustering strategies typically
compute the distances of each pixel embedding to the centers
and assign the pixels to their corresponding nearest cluster
centers.

Training with the UOAIS-Sim Dataset. We train MSM-
Former on UOAIS-Sim dataset [3] (45,000 images) for 8
epochs since the dataset has fewer images than the Tabletop
Object Dataset [4] (280,000 images). Other training settings
do not change, such as batch size and learning rate.

III. ADDITIONAL RESULTS FOR ABLATION STUDIES

In this section, we show the additional results.
Attention mask. We include attention masks in our mean

shift cross-attention. We empirically show that it is useful
to boost the performance of the model. For example, we
compare the final performance of the second-stage network
with and without attention masks, after using the output of
the best first-stage model. As is shown in Table II, the usage
of attention masks leads to improvements in all metrics.

TABLE II
COMPARISON OF THE SECOND-STAGE NETWORKS WITH OR WITHOUT

ATTENTION MASK IN MEAN SHIFT CROSS-ATTENTIONS AFTER USING

THE BEST INITIAL LABELS FROM THE FIRST STAGE.

Having Attention Mask
OCID (2390 images)

Overlap Boundary
P R F P R F %75

False 91.1 90.1 90.4 86.9 84.3 85.2 83.4
True 92.5 91.0 91.5 89.4 85.9 87.3 86.0

ℓ2 Norm after layer Norms in Masked decoder layers
vs. MS decoder layers. Simply adding ℓ2 Norm after layer



Fig. 1. The two-stage clustering process to refine segmentation labels. For an RGB-D image with size 480×640, the first stage provides approximate
segments as initial labels to generate ROIs with size 224×224 (Region of Interest). Each ROI passes through the second-stage network to produce its own
masks. The masks from all ROIs are further combined into the final label. In this example, the mask of an orange and a can is successfully split into two
object segments in the second stage.

TABLE III
MASKED IS THE MASKED ATTENTION (I.E. NORMAL ATTENTION WITH ATTENTION MASK). L2 NORM ADDITION IS ADDING L2 NORMALIZATION

AFTER EACH LAYER NORM WITH MASKED ATTENTION. MS IS OUR MEAN SHIFT DECODER WITH HYPERSPHERE ATTENTION.

Method Input
OCID (2390 images) OSD (111 images)

Overlap Boundary Overlap Boundary
P R F P R F %75 P R F P R F %75

Masked RGB 67.2 73.1 67.1 55.9 58.1 54.5 54.3 60.6 60.2 59.5 48.2 41.7 43.3 32.4
L2 Norm Addition RGB 75.7 51.8 56.3 59.8 43.0 44.8 38.2 53.8 56.1 53.8 29.0 47.2 34.0 26.2

MS (Ours) RGB 72.9 68.3 67.7 60.5 56.3 55.8 52.9 63.4 64.7 63.6 48.6 47.4 47.0 40.2
Masked RGBD 88.4 90.0 88.2 85.4 82.4 83.0 78.8 72.4 80.5 76.2 45.6 63.4 52.5 65.3

L2 Norm Addition RGBD 84.8 79.9 81.3 72.8 73.8 72.2 65.7 82.8 80.3 81.2 57.8 66.2 60.6 70.0
MS (Ours) RGBD 88.4 90.2 88.5 84.7 83.1 83.0 80.3 79.5 86.4 82.8 53.5 71.0 60.6 79.4

norms does not improve the performance of masked attention
layers. As shown in Table III, in most cases, incorporating
ℓ2 Norm adversely affects model performance. Empirically,
it exhibits dissimilarities in comparison to our MS decoder.

ℓ2 Norm after FFN in MS decoder layers. We use ℓ2
norm after FFN to output unit vectors as cluster centers
on a hypersphere. We compare the final performance of
the second-stage network with or without ℓ2 Norm in MS
decoder layers, after using the output of the best first-stage
model. As seen in Table IV, ℓ2 norm results in improvements
in all metrics.

TABLE IV
COMPARISON OF THE SECOND-STAGE NETWORKS WITH OR WITHOUT ℓ2

NORM IN MS DECODER AFTER USING THE BEST INITIAL LABELS FROM

THE FIRST STAGE.

Using ℓ2 Norm
OCID (2390 images)

Overlap Boundary
P R F P R F %75

False 92.1 89.9 90.7 88.4 84.8 86.2 84.5
True 92.5 91.0 91.5 89.4 85.9 87.3 86.0
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